GNU C++ compiler error message:

fig08_10.cpp: In function ‘void f(const int*)’:
fig08_10.cpp:17:12: error: assignment of read-only location ‘* xPtr’

Fig. 8.10 | Attempting to modify data through a nonconstant pointer to const
data. (Part 2 of 2.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Performance Tip 8.1

[f they do not need to be modified by the called function,
pass large objects using pointers to constant data or
references to constant data, to obtain the performance
benefits of pass-by-reference and avoid the copy
overhead of pass-by-value.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

§§| Software Engineering Observation 8.3

Passing large objects using pointers to constant data, or
references to constant data offers the security of pass-by-
value.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Software Engineering Observation 8.4

Use pass-by-value to pass fundamental-type arguments
(e.g., ints, doubles, etc.) to a function unless the caller
explicitly requires that the called function be able to
directly modify the value in the caller. This is another
example of the principle of least privilege.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.6.3 Constant Pointer to Nonconstant Data

* A constant pointer to nonconstant data is a
ointer that always points to the same memory
ocation, and the data at that location can be

modified through the pointer.

* Pointers that are declared const must be
initialized when they re declared.

* If the pointer 1s a function parameter, 1t’s
initialized with a pointer that’s passed to the
function.

* The program of Fig. 8.11 attempts to modify a
constant pointer.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

I // Fig. 8.11: fig08_11.cpp

2 // Attempting to modify a constant pointer to nonconstant data.
3

4 int mainQ

5 {

6 int x, y;

7

8 // ptr is a constant pointer to an integer that can

9 // be modified through ptr, but ptr always points to the

10 // same memory location.

11 int * const ptr = &x; // const pointer must be initialized
12

13 *ptr = 7; // allowed: *ptr is not const

14 ptr = &y; // error: ptr is const; cannot assignh to it a new address

I5 } // end main

Microsoft Visual C++ compiler error message:

you cannot assigh to a variable that is const

Fig. 8.11 | Attempting to modify a constant pointer to nonconstant data.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.6.4 Constant Pointer to Constant Data

The minimum access privilege Is granted by a constant pointer to
constant data.

— Such a pointer a/ways points to the sa/me memory location, and the data
at that location cannotbe modified via the pointer.

— This is how a built-in array should be passed to a function that only
reads from the built-in array, using array subscript notation, and does
not modify the built-in array.

The program of Fig. 8.12 declares pointer variable ptr to be of
type const 1nt * const (line 13).

This declaration is read from right to leftas “ptr is a constant
pointer to an integer constant.”

The figure shows the Xcode LLVM compiler’s error messages
that are generated when an attempt is made to modify the data to
which ptr points and when an attempt is made to modify the
address stored in the pointer variable—these show up on the lines
of code with the errors in the Xcode text editor.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

VO~ UBNDE WN =

19

// Fig. 8.12: fig08_12.cpp

// Attempting to modify a constant pointer to constant data.
#include <iostream>

using namespace std;

int main(Q)

{

int x = 5, vy;

// ptr is a constant pointer to a constant integer.

// ptr always points to the same location; the integer
// at that location cannot be modified.

const int *const ptr = &x;

cout << *ptr << endl;

*ptr = 7; // error: *ptr is const; cannot assign new value
ptr = &y; // error: ptr is const; cannot assign new address

} // end main

Fig. 8.12 | Attempting to modify a constant pointer to constant data. (Part | of

2.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Xcode LLVM compiler error message:

Read-only variable is not assignable
Read-only variable is not assignable

Fig. 8.12 | Attempting to modify a constant pointer to constant data. (Part 2 of
2.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

si1zeof Operator

* The unary operator sizeof determines the
size in bytes of a built-in array or of any other
data type, variable or constant auring program
compilation.

* When applied to a built-in array’s name, as in
Fig. 8.13, the s1zeoT operator returns the
total number of bytes in the built-in array as a
value of type s1ze_t.

* When applied to a pointer parameterin a
function that recerves.g built-in array as an

Common Programming Error 8.3

% Using the sizeof operator in a function to find the size
in bytes of a built-in array parameter results in the size in
bytes of a pointer, not the size in bytes of the built-in

array.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

OoOo~NOTUnNHh WN=

10
11
12
13
14
15
16
17
18
19
20
21
22
23

// Fig. 8.13: fig08_13.cpp

// Sizeof operator when used on a built-in array's name
// returns the number of bytes in the built-in array.
#include <iostream>

using namespace std;

size_t getSize(double *); // prototype

int main()

{
double numbers[1; // 20 doubles; occupies 160 bytes on our system
cout << << sizeof(numbers);
cout <<

<< getSize(numbers) << endl;
} // end main

// return size of ptr
size_t getSize(double *ptr)
{
return sizeof(ptr);
} // end function getSize

Fig. 8.13 | sizeof operator when applied to a built-in array’s name returns the
number of bytes in the built-in array. (Part | of 2.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

The number of bytes in the array is 160
The number of bytes returned by getSize 1is 4

Fig. 8.13 | sizeof operator when applied to a built-in array’s name returns the
number of bytes in the built-in array. (Part 2 of 2.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.7 si1zeof Operator (cont.)

« To determine the number of elements in the built-in array
numbers, use the following expression (which is
evaluated at compile time) -

e« sizeof numbers / sizeof(numbers[0])

« The expression divides the number of bytes in numbers by

the number of bytes in the built-in array’s zeroth element.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.7 si1zeof Operator (cont.)

 Figure 8.14 uses s1zeof to calculate the
number of bytes used to store many of the
standard data types.

* The output was produced using the default
settings in Visual C++ 2012 on a Windows 7

computer.
— Type sizes are platform dependent.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

