
©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.6.3 Constant Pointer to Nonconstant Data

• A constant pointer to nonconstant data is a
pointer that always points to the same memory
location, and the data at that location can be
modified through the pointer.

• Pointers that are declared const must be
initialized when they’re declared.

• If the pointer is a function parameter, it’s
initialized with a pointer that’s passed to the
function.

• The program of Fig. 8.11 attempts to modify a
constant pointer.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.6.4 Constant Pointer to Constant Data

• The minimum access privilege is granted by a constant pointer to
constant data.
– Such a pointer always points to the same memory location, and the data

at that location cannot be modified via the pointer.

– This is how a built-in array should be passed to a function that only
reads from the built-in array, using array subscript notation, and does
not modify the built-in array.

• The program of Fig. 8.12 declares pointer variable ptr to be of
type const int * const (line 13).

• This declaration is read from right to left as “ptr is a constant
pointer to an integer constant.”

• The figure shows the Xcode LLVM compiler’s error messages
that are generated when an attempt is made to modify the data to
which ptr points and when an attempt is made to modify the
address stored in the pointer variable—these show up on the lines
of code with the errors in the Xcode text editor.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.7 sizeof Operator

• The unary operator sizeof determines the

size in bytes of a built-in array or of any other

data type, variable or constant during program

compilation.

• When applied to a built-in array’s name, as in

Fig. 8.13, the sizeof operator returns the

total number of bytes in the built-in array as a

value of type size_t.

• When applied to a pointer parameter in a

function that receives a built-in array as an
argument, the sizeof operator returns the

size of the pointer in bytes—not the built-in

array’s size.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.7 sizeof Operator (cont.)

• To determine the number of elements in the built-in array

numbers, use the following expression (which is

evaluated at compile time) :

• sizeof numbers / sizeof(numbers[0])

• The expression divides the number of bytes in numbers by

the number of bytes in the built-in array’s zeroth element.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.7 sizeof Operator (cont.)

• Figure 8.14 uses sizeof to calculate the

number of bytes used to store many of the

standard data types.

• The output was produced using the default

settings in Visual C++ 2012 on a Windows 7

computer.

– Type sizes are platform dependent.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

